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Improved energy efficiency is needed for 
Industries of the Future (IOF) to stay 
globally competitive

Future emissions regulations will require 
closer monitoring of industrial combustors

In situ sensors for active control are scarce

Accurate, robust, and inexpensive sensors 
are needed for industrial combustion 
monitoring  
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To build and test a Tunable Diode Laser Absorption 

Spectroscopy (TDLAS) system to measure real-time 

concentrations and temperatures non-intrusively in 

industrial burners

• Design and build a robust diode laser system to 

withstand the harsh environments of industrial 

applications

• Calibrate and test the system in a laboratory

• Integrate the system into an industrial burner

• Test the system in real-world conditions

�

�
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TDLAS System for Monitoring Temperature 

and H
2
O in Industrial Burners

Detector
75-m Optical 
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multiplexer
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controller
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signal 

processing
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ω1 = 1343 nm ω2 = 1392 nm



6

MetroLaser

Irvine, California

Theory of Mole Fraction (X
i
) Measurements:

Scanned Wavelength Absorption Spectroscopy
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Theory of Temperature (T) Measurements:

Two-line absorption ratio technique

Ratio of peak absorbances:
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Practical Issues: Noise

Iν

I0

Ideal:

Iν

I0

Real:

Noise sources:

•Flame emission

•Laser amplitude noise

•Detector noise

•Amplifier noise

Noise reduction techniques:

• Balanced detection

• Frequency shifting with 

lock-in detection

νν



9

MetroLaser

Irvine, California

Noise Reduction by Modulation & Phase Detection:
Shifting in Frequency Space

1/f Noise

Lock-in detection method:

• Signal is frequency-shifted by modulating laser at f
mod

• Modulated signal is detected by a phase-sensitive method

• Noise is not modulated, thus is greatly reduced at f
mod

Frequency
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Example of Lock-in Detection
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Example of Lock-in Detection
Signal A is Modulated to get Signal b

ωωωω
mod

>> ωωωω
A

b = Acos(ωmodt+δ) + noise
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Wavelength Modulation Spectroscopy
Lock-in detection applied to an absorption scan

•High-freq. Modulation 

enables lock-in detection for 

noise reduction

•Current ramp produces laser 

wavelength scan

Scan Waveform:

•Absorption modifies 

waveform

•Lock-in signal is 

sensitive to absorption

Waveform with absorbance:
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• ω
dm

= ω
mod

•Waveform resembles 1st

derivative of lineshape

1f Waveform:

2f Waveform:

• ω
dm

= 2ω
mod

•Waveform resembles 2nd

derivative of lineshape

•2f signal = 0 in the wings
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Wavelength Modulation Spectroscopy
Lock-in detection applied to an absorption scan
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Calibration of TDLAS System

Detector
75-m Optical fiber

2-into-1

multiplexer

Tunable Diode 

lasers Laser current 

controller
Computer for 

signal 

processing

ω
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= 1392 nm

Beam 

launch

Waveform 

generator

Thermocoupleω
1 
= 1343 nm
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Failure of Thermocouple at High Temperature

• S-type thermocouple fails during use at T > 2000 K 

• Thermocouple life is significantly reduced for T > 1800 K
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Detail of Interface Hardware

Detector with

nitrogen purge

Transmitter port

with nitrogen purge

Flat flame

burner

• Transmitter and detector mounted rigidly using pipe fittings 

• Single detector simplifies the system
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Characterization of Premixed Flat Flame

• Corrected thermocouple measurements in good agreement 

with thermochemical equilibrium calculations.

• Temperatures can be varied over 300 K while flame remains 

stable.
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Example Scan in a CH
4
/air Flat Flame

• Scanning range covers entire line 

• Good agreement with simulation based on HITEMP database
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2f signal of 

1392-nm line

2f signal of 

1343-nm line

Real-time strip chart display of R2f ~ T
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Calibration of 2f Ratio for Temperature
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• Simulated 2f ratio anchored by thermocouple data, 

establishing a calibration
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H
2
O Profile in 1-D Flame Measured 

Using TDLAS
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C
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4
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• Experimental mole fractions in good agreement with 

theoretical

• Measured XH2O decreases with height due to mixing
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TDLAS Temperature Profile in 1-D Flame

• Measurements made near the flame zone where 

thermocouples fail

• Data rate of 10 Hz surpasses thermocouple system by 20x
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Raw Data: TDLAS and TC
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Shells of Constant Absorbance

0

-2 

-12

-10 

-8 

-6 

-4 

14 

12 

2

4

6 

8 

10 

-14

16 

-16

1

2

3

4

5

6 L1 L2 L3 L4 L5 L6 

L1’ 

L1’’ 

L1’’’ 
L4

iv
 

L1
v
 

L2
iv
 

L3’’’ 

L4’’ 

L5’ 

L2’’’ 

L3’’ 

L4’ 

L2’’ 

L3’ 

L2’ 



27

MetroLaser

Irvine, California

Calibration

2f calibration for TDLAS
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Measured Temperature: TDLAS and TC
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Measured H
2
O Concentration

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

-20 -15 -10 -5 0 5 10 15 20

r (mm)

X
 (

H
2
O

)

from 1392-nm laser

from 1343-nm laser

Above 

Centerline
Below 

Centerline



30

MetroLaser

Irvine, California

� A TDLAS system has been developed and 

calibrated for Real-time in situ measurements of T

and X
H2O

in industrial applications 

� The system enabled measurements in the flame 

zone where thermocouples failed

� Data rates of 10 Hz were demonstrated, with 

potential for being greater

� TDLAS sensors may help improve efficiency in and 

reduce pollution from industrial burners.
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� Demonstrate measurements of T & X
H2O

in an 

industrial spray jet flame, and in a low-NO
x

staged-

fuel combustor

� Incorporate additional species, including CO
2
, CO, 

NO, etc.

� Develop lower-cost version of current modulation 

electronics for commercial use



32

MetroLaser

Irvine, California

• Gideon Varga, DOE

• Scott Samuelsen’s 

Group, University of 

California, Irvine

• Ron Hanson’s Group, 

Stanford University


